Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.647
1.
Cell Mol Life Sci ; 81(1): 213, 2024 May 10.
Article En | MEDLINE | ID: mdl-38727814

Trimeric G proteins transduce signals from a superfamily of receptors and each G protein controls a wide range of cellular and systemic functions. Their highly conserved alpha subunits fall in five classes, four of which have been well investigated (Gs, Gi, G12, Gq). In contrast, the function of the fifth class, Gv is completely unknown, despite its broad occurrence and evolutionary ancient origin (older than metazoans). Here we show a dynamic presence of Gv mRNA in several organs during early development of zebrafish, including the hatching gland, the pronephros and several cartilage anlagen, employing in situ hybridisation. Next, we generated a Gv frameshift mutation in zebrafish and observed distinct phenotypes such as reduced oviposition, premature hatching and craniofacial abnormalities in bone and cartilage of larval zebrafish. These phenotypes could suggest a disturbance in ionic homeostasis as a common denominator. Indeed, we find reduced levels of calcium, magnesium and potassium in the larvae and changes in expression levels of the sodium potassium pump atp1a1a.5 and the sodium/calcium exchanger ncx1b in larvae and in the adult kidney, a major osmoregulatory organ. Additionally, expression of sodium chloride cotransporter slc12a3 and the anion exchanger slc26a4 is altered in complementary ways in adult kidney. It appears that Gv may modulate ionic homeostasis in zebrafish during development and in adults. Our results constitute the first insight into the function of the fifth class of G alpha proteins.


Homeostasis , Zebrafish Proteins , Zebrafish , Animals , Zebrafish/genetics , Zebrafish/metabolism , Homeostasis/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , GTP-Binding Protein alpha Subunits/metabolism , GTP-Binding Protein alpha Subunits/genetics , Larva/metabolism , Larva/genetics , Larva/growth & development , Gene Expression Regulation, Developmental , Sodium-Potassium-Exchanging ATPase/metabolism , Sodium-Potassium-Exchanging ATPase/genetics , Calcium/metabolism , Kidney/metabolism , Magnesium/metabolism
2.
Biomolecules ; 14(3)2024 Mar 10.
Article En | MEDLINE | ID: mdl-38540748

Ocular neovascularization can impair vision and threaten patients' quality of life. However, the underlying mechanism is far from transparent. In all mammals, macrophages are a population of cells playing pivotal roles in the innate immune system and the first line of defense against pathogens. Therefore, it has been speculated that the disfunction of macrophage homeostasis is involved in the development of ocular vascular diseases. Moreover, various studies have found that non-coding RNAs (ncRNAs) regulate macrophage homeostasis. This study reviewed past studies of the regulatory roles of ncRNAs in macrophage homeostasis in ocular vascular diseases.


RNA, Long Noncoding , Vascular Diseases , Animals , Humans , Quality of Life , RNA, Untranslated/genetics , Vascular Diseases/genetics , Macrophages , Homeostasis/genetics , Mammals
3.
Int J Biol Sci ; 20(5): 1617-1633, 2024.
Article En | MEDLINE | ID: mdl-38481810

In rheumatoid arthritis (RA), a debilitating autoimmune disorder marked by chronic synovial inflammation and progressive cartilage degradation, fibroblast-like synoviocytes (FLS) are key pathogenic players. Current treatments targeting these cells are limited. Our study focused on the Fat Mass and Obesity-associated protein (FTO), known for its roles in cell proliferation and inflammatory response modulation, and its involvement in RA. We specifically examined the inflammatory regulatory roles of FTO and CMPK2, a mitochondrial DNA synthesis protein, in FLS. Utilizing a combination of in vitro and in vivo methods, including FTO inhibition and gene knockdown, we aimed to understand FTO's influence on RA progression and chondrocyte functionality. Our findings showed that increased FTO expression in RA synovial cells enhanced their proliferation and migration and decreased senescence and apoptosis. Inhibiting FTO significantly slowed the disease progression in our models. Our research also highlighted that the FTO-CMPK2 pathway plays a crucial role in regulating synovial inflammation through the mtDNA-mediated cGAS/STING pathway, affecting chondrocyte homeostasis. This study indicates that targeting the FTO-CMPK2 axis could be a promising new therapeutic strategy for managing RA.


Arthritis, Rheumatoid , Synoviocytes , Humans , Synovial Membrane/metabolism , Synovial Membrane/pathology , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/drug therapy , Inflammation/genetics , Inflammation/metabolism , Cell Proliferation/genetics , Homeostasis/genetics , Fibroblasts/metabolism , Cartilage/metabolism , Cells, Cultured , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism
4.
PLoS Genet ; 20(3): e1011196, 2024 Mar.
Article En | MEDLINE | ID: mdl-38466721

Hematophagous mosquitoes require vertebrate blood for their reproductive cycles, making them effective vectors for transmitting dangerous human diseases. Thus, high-intensity metabolism is needed to support reproductive events of female mosquitoes. However, the regulatory mechanism linking metabolism and reproduction in mosquitoes remains largely unclear. In this study, we found that the expression of estrogen-related receptor (ERR), a nuclear receptor, is activated by the direct binding of 20-hydroxyecdysone (20E) and ecdysone receptor (EcR) to the ecdysone response element (EcRE) in the ERR promoter region during the gonadotropic cycle of Aedes aegypti (named AaERR). RNA interference (RNAi) of AaERR in female mosquitoes led to delayed development of ovaries. mRNA abundance of genes encoding key enzymes involved in carbohydrate metabolism (CM)-glucose-6-phosphate isomerase (GPI) and pyruvate kinase (PYK)-was significantly decreased in AaERR knockdown mosquitoes, while the levels of metabolites, such as glycogen, glucose, and trehalose, were elevated. The expression of fatty acid synthase (FAS) was notably downregulated, and lipid accumulation was reduced in response to AaERR depletion. Dual luciferase reporter assays and electrophoretic mobility shift assays (EMSA) determined that AaERR directly activated the expression of metabolic genes, such as GPI, PYK, and FAS, by binding to the corresponding AaERR-responsive motif in the promoter region of these genes. Our results have revealed an important role of AaERR in the regulation of metabolism during mosquito reproduction and offer a novel target for mosquito control.


Aedes , Receptors, Steroid , Animals , Female , Humans , Aedes/genetics , Aedes/metabolism , Ecdysone/metabolism , Mosquito Vectors/genetics , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Homeostasis/genetics , Insect Proteins/genetics , Insect Proteins/metabolism
5.
mSystems ; 9(4): e0139723, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38501880

Iron is a transition metal used as a cofactor in many biochemical reactions. In bacteria, iron homeostasis involves Fur-mediated de-repression of iron uptake systems, such as the iron-chelating compounds siderophores. In this work, we identified and characterized novel regulatory systems that control siderophores in the environmental opportunistic pathogen Chromobacterium violaceum. Screening of a 10,000-transposon mutant library for siderophore halos identified seven possible regulatory systems involved in siderophore-mediated iron homeostasis in C. violaceum. Further characterization revealed a regulatory cascade that controls siderophores involving the transcription factor VitR acting upstream of the quorum-sensing (QS) system CviIR. Mutation of the regulator VitR led to an increase in siderophore halos, and a decrease in biofilm, violacein, and protease production. We determined that these effects occurred due to VitR-dependent de-repression of vioS. Increased VioS leads to direct inhibition of the CviR regulator by protein-protein interaction. Indeed, insertion mutations in cviR and null mutations of cviI and cviR led to an increase of siderophore halos. RNA-seq of the cviI and cviR mutants revealed that CviR regulates CviI-dependent and CviI-independent regulons. Classical QS-dependent processes (violacein, proteases, and antibiotics) were activated at high cell density by both CviI and CviR. However, genes related to iron homeostasis and many other processes were regulated by CviR but not CviI, suggesting that CviR acts without its canonical CviI autoinducer. Our data revealed a complex regulatory cascade involving QS that controls siderophore-mediated iron homeostasis in C. violaceum.IMPORTANCEThe iron-chelating compounds siderophores play a major role in bacterial iron acquisition. Here, we employed a genetic screen to identify novel siderophore regulatory systems in Chromobacterium violaceum, an opportunistic human pathogen. Many mutants with increased siderophore halos had transposon insertions in genes encoding transcription factors, including a novel regulator called VitR, and CviR, the regulator of the quorum-sensing (QS) system CviIR. We found that VitR is upstream in the pathway and acts as a dedicated repressor of vioS, which encodes a direct CviR-inhibitory protein. Indeed, all QS-related phenotypes of a vitR mutant were rescued in a vitRvioS mutant. At high cell density, CviIR activated classical QS-dependent processes (violacein, proteases, and antibiotics production). However, genes related to iron homeostasis and type-III and type-VI secretion systems were regulated by CviR in a CviI- or cell density-independent manner. Our data unveil a complex regulatory cascade integrating QS and siderophores in C. violaceum.


Chromobacterium , Iron , Siderophores , Humans , Siderophores/genetics , Bacteria/metabolism , Homeostasis/genetics , Anti-Bacterial Agents/chemistry , Peptide Hydrolases
6.
J Biol Chem ; 300(4): 107164, 2024 Apr.
Article En | MEDLINE | ID: mdl-38484798

O-glycosylation is a conserved posttranslational modification that impacts many aspects of organismal viability and function. Recent studies examining the glycosyltransferase Galnt11 demonstrated that it glycosylates the endocytic receptor megalin in the kidneys, enabling proper binding and reabsorption of ligands, including vitamin D-binding protein (DBP). Galnt11-deficient mice were unable to properly reabsorb DBP from the urine. Vitamin D plays an essential role in mineral homeostasis and its deficiency is associated with bone diseases such as rickets, osteomalacia, and osteoporosis. We therefore set out to examine the effects of the loss of Galnt11 on vitamin D homeostasis and bone composition. We found significantly decreased levels of serum 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D, consistent with decreased reabsorption of DBP. This was accompanied by a significant reduction in blood calcium levels and a physiologic increase in parathyroid hormone (PTH) in Galnt11-deficient mice. Bones in Galnt11-deficient mice were smaller and displayed a decrease in cortical bone accompanied by an increase in trabecular bone and an increase in a marker of bone formation, consistent with PTH-mediated effects on bone. These results support a unified model for the role of Galnt11 in bone and mineral homeostasis, wherein loss of Galnt11 leads to decreased reabsorption of DBP by megalin, resulting in a cascade of disrupted mineral and bone homeostasis including decreased circulating vitamin D and calcium levels, a physiological increase in PTH, an overall loss of cortical bone, and an increase in trabecular bone. Our study elucidates how defects in O-glycosylation can influence vitamin D and mineral homeostasis and the integrity of the skeletal system.


Bone and Bones , Homeostasis , Polypeptide N-acetylgalactosaminyltransferase , Vitamin D , Animals , Male , Mice , Bone and Bones/anatomy & histology , Bone and Bones/chemistry , Bone and Bones/metabolism , Calcium/metabolism , Glycosylation , Homeostasis/genetics , Parathyroid Hormone/metabolism , Vitamin D/metabolism , Vitamin D/analogs & derivatives , Vitamin D-Binding Protein/metabolism
7.
Proc Natl Acad Sci U S A ; 121(10): e2314695121, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38416679

NOVA1 is a neuronal RNA-binding protein identified as the target antigen of a rare autoimmune disorder associated with cancer and neurological symptoms, termed paraneoplastic opsoclonus-myoclonus ataxia. Despite the strong association between NOVA1 and cancer, it has been unclear how NOVA1 function might contribute to cancer biology. In this study, we find that NOVA1 acts as an oncogenic factor in a GBM (glioblastoma multiforme) cell line established from a patient. Interestingly, NOVA1 and Argonaute (AGO) CLIP identified common 3' untranslated region (UTR) targets, which were down-regulated in NOVA1 knockdown GBM cells, indicating a transcriptome-wide intersection of NOVA1 and AGO-microRNA (miRNA) targets regulation. NOVA1 binding to 3'UTR targets stabilized transcripts including those encoding cholesterol homeostasis related proteins. Selective inhibition of NOVA1-RNA interactions with antisense oligonucleotides disrupted GBM cancer cell fitness. The precision of our GBM CLIP studies point to both mechanism and precise RNA sequence sites to selectively inhibit oncogenic NOVA1-RNA interactions. Taken together, we find that NOVA1 is commonly overexpressed in GBM, where it can antagonize AGO2-miRNA actions and consequently up-regulates cholesterol synthesis, promoting cell viability.


Glioblastoma , MicroRNAs , Humans , Glioblastoma/genetics , Glioblastoma/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , MicroRNAs/genetics , Homeostasis/genetics , Cholesterol , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Neuro-Oncological Ventral Antigen
8.
PLoS Genet ; 20(2): e1011137, 2024 Feb.
Article En | MEDLINE | ID: mdl-38335241

Lipid dyshomeostasis has been implicated in a variety of diseases ranging from obesity to neurodegenerative disorders such as Neurodegeneration with Brain Iron Accumulation (NBIA). Here, we uncover the physiological role of Nazo, the Drosophila melanogaster homolog of the NBIA-mutated protein-c19orf12, whose function has been elusive. Ablation of Drosophila c19orf12 homologs leads to dysregulation of multiple lipid metabolism genes. nazo mutants exhibit markedly reduced gut lipid droplet and whole-body triglyceride contents. Consequently, they are sensitive to starvation and oxidative stress. Nazo is required for maintaining normal levels of Perilipin-2, an inhibitor of the lipase-Brummer. Concurrent knockdown of Brummer or overexpression of Perilipin-2 rescues the nazo phenotype, suggesting that this defect, at least in part, may arise from diminished Perilipin-2 on lipid droplets leading to aberrant Brummer-mediated lipolysis. Our findings potentially provide novel insights into the role of c19orf12 as a possible link between lipid dyshomeostasis and neurodegeneration, particularly in the context of NBIA.


Drosophila melanogaster , Drosophila , Animals , Drosophila/genetics , Drosophila/metabolism , Drosophila melanogaster/genetics , Perilipin-2 , Homeostasis/genetics , Triglycerides/genetics , Triglycerides/metabolism , Lipids
9.
Sci Rep ; 14(1): 2895, 2024 02 05.
Article En | MEDLINE | ID: mdl-38316848

Gastric cancer (GC) is one of the most common and deadliest cancers worldwide. Lipid homeostasis is essential for tumour development because lipid metabolism is one of the most important metabolic reprogramming pathways within tumours. Elucidating the mechanism of lipid homeostasis in GC might significantly improve treatment strategies and patient prognosis. GSE62254 was applied to construct a lipid homeostasis-related gene signature score (HGSscore) by multiple bioinformatic algorithms including weighted gene coexpression network analysis (WGCNA) and LASSO-Cox regression. A nomogram based on HGSscore and relevant clinical characteristics was constructed to predict the survival of patients with GC. TIMER and xCell were used to evaluate immune and stromal cell infiltration in the tumour microenvironment. Correlations between lipid homeostasis-related genes and chemotherapeutic efficacy were analysed in GSCAlite. RT‒qPCR and cell viability assays were applied to verify the findings in this study. HGSscore was constructed based on eighteen lipid homeostasis-related genes that were selected by WGCNA and LASSO-Cox regression. HGSscore was strongly associated with advanced TNM stage and showed satisfactory value in predicting GC prognosis in three independent cohorts. Furthermore, we found that HGSscore was associated with the tumour mutation burden (TMB) and immune/stromal cell infiltration, which are related to GC prognosis, indicating that lipid homeostasis impacts the formation of the tumour microenvironment (TME). With respect to the GSCAlite platform, PLOD2 and TGFB2 were shown to be positively related to chemotherapeutic resistance, while SLC10A7 was a favourable factor for chemotherapy efficacy. Cell viability assays showed that disrupted lipid homeostasis could attenuate GC cell viability. Moreover, RT‒qPCR revealed that lipid homeostasis could influence expression of specific genes. We identified a lipid homeostasis-related gene signature that correlated with survival, clinical characteristics, the TME, and chemotherapeutic efficacy in GC patients. This research provides a new perspective for improving prognosis and guiding individualized chemotherapy for patients with GC.


Stomach Neoplasms , Humans , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Prognosis , Nomograms , Homeostasis/genetics , Lipids , Tumor Microenvironment/genetics
10.
Biomolecules ; 14(2)2024 Jan 23.
Article En | MEDLINE | ID: mdl-38397376

Zebrafish are now widely used to study skeletal development and bone-related diseases. To that end, understanding osteoblast differentiation and function, the expression of essential transcription factors, signaling molecules, and extracellular matrix proteins is crucial. We isolated Sp7-expressing osteoblasts from 4-day-old larvae using a fluorescent reporter. We identified two distinct subpopulations and characterized their specific transcriptome as well as their structural, regulatory, and signaling profile. Based on their differential expression in these subpopulations, we generated mutants for the extracellular matrix protein genes col10a1a and fbln1 to study their functions. The col10a1a-/- mutant larvae display reduced chondrocranium size and decreased bone mineralization, while in adults a reduced vertebral thickness and tissue mineral density, and fusion of the caudal fin vertebrae were observed. In contrast, fbln1-/- mutants showed an increased mineralization of cranial elements and a reduced ceratohyal angle in larvae, while in adults a significantly increased vertebral centra thickness, length, volume, surface area, and tissue mineral density was observed. In addition, absence of the opercle specifically on the right side was observed. Transcriptomic analysis reveals up-regulation of genes involved in collagen biosynthesis and down-regulation of Fgf8 signaling in fbln1-/- mutants. Taken together, our results highlight the importance of bone extracellular matrix protein genes col10a1a and fbln1 in skeletal development and homeostasis.


Collagen Type X , Extracellular Matrix Proteins , Osteoblasts , Zebrafish , Animals , Cell Differentiation , Extracellular Matrix/genetics , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Homeostasis/genetics , Minerals/metabolism , Osteoblasts/metabolism , Transcriptome/genetics , Zebrafish/genetics , Zebrafish/growth & development , Collagen Type X/genetics , Collagen Type X/physiology
11.
Life Sci Alliance ; 7(5)2024 May.
Article En | MEDLINE | ID: mdl-38408795

Starvation and refeeding are mostly unanticipated in the wild in terms of duration, frequency, and nutritional value of the refed state. Notwithstanding this, organisms mount efficient and reproducible responses to restore metabolic homeostasis. Hence, it is intuitive to invoke expectant molecular mechanisms that build anticipatory responses to enable physiological toggling during fed-fast cycles. In this regard, we report anticipatory biogenesis of oscillatory hepatic microRNAs that peak during a fed state and inhibit starvation-responsive genes. Our results clearly demonstrate that the levels of primary and precursor microRNA transcripts increase during a fasting state, in anticipation of a fed response. We delineate the importance of both metabolic and circadian cues in orchestrating hepatic fed microRNA homeostasis in a physiological setting. Besides illustrating metabo-endocrine control, our findings provide a mechanistic basis for the overarching influence of starvation on anticipatory biogenesis. Importantly, by using pharmacological agents that are widely used in clinics, we point out the high potential of interventions to restore homeostasis of hepatic microRNAs, whose deregulated expression is otherwise well established to cause metabolic diseases.


MicroRNAs , Starvation , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Liver/metabolism , Starvation/metabolism , Homeostasis/genetics
13.
PeerJ ; 12: e16739, 2024.
Article En | MEDLINE | ID: mdl-38282864

GPR149 is an orphan receptor about which little is known. Accordingly, in the present study, we mapped the tissue expression of Gpr149 in mice using three complementary approaches: quantitative PCR, in situ hybridization, and a newly generated Gpr149-Cre reporter mouse model. The strongest expressions of Gpr149 were observed in neurons of the islands of Calleja, the ventromedial hypothalamus, and the rostral interpeduncular nucleus. Moderate-to-low expression was also observed in the basal forebrain, striatum, hypothalamus, brainstem, and spinal cord. Some Gpr149 expression was also detected in the primary afferent neurons, enteric neurons, and pituitary endocrine cells. This expression pattern is consistent with the involvement of GPR149 signaling in the regulation of energy balance. To explore the physiological function of GPR149 in vivo, we used CRISPR-Cas9 to generate a global knockout allele with mice lacking Gpr149 exon 1. Preliminary metabolic findings indicated that Gpr149-/- mice partially resist weight gain when fed with a high-fat diet and have greater sensitivity to insulin than control mice. In summary, our data may serve as a resource for future in vivo studies on GPR149 in the context of diet-induced obesity.


Hypothalamus , Obesity , Receptors, G-Protein-Coupled , Animals , Male , Mice , Diet, High-Fat/adverse effects , Homeostasis/genetics , Hypothalamus/metabolism , Obesity/metabolism , Receptors, G-Protein-Coupled/genetics , Weight Gain
14.
Sci Rep ; 14(1): 810, 2024 01 08.
Article En | MEDLINE | ID: mdl-38191655

Over the last decade we have witnessed an increasing number of studies revealing the functional role of non-coding RNAs in a multitude of biological processes, including cellular homeostasis, proliferation and differentiation. Impaired expression of non-coding RNAs can cause distinct pathological conditions, including herein those affecting the gastrointestinal and cardiorespiratory systems, respectively. miR-15/miR-16/miR-195 family members have been broadly implicated in multiple biological processes, including regulation of cell proliferation, apoptosis and metabolism within distinct tissues, such as heart, liver and lungs. While the functional contribution of miR-195a has been reported in multiple biological contexts, the role of miR-195b remains unexplored. In this study we dissected the functional role of miR-195b by generating CRISPR-Cas9 gene edited miR-195b deficient mice. Our results demonstrate that miR-195b is dispensable for embryonic development. miR-195b-/- mice are fertile and displayed no gross anatomical and/or morphological defects. Mechanistically, cell cycle regulation, metabolism and oxidative stress markers are distinctly impaired in the heart, liver and lungs of aged mice, a condition that is not overtly observed at midlife. The lack of overt functional disarray during embryonic development and early adulthood might be due to temporal and tissue-specific compensatory mechanisms driven by selective upregulation miR-15/miR-16/miR-195 family members. Overall, our data demonstrated that miR-195b is dispensable for embryonic development and adulthood but is required for cellular homeostasis in the elderly.


Homeostasis , MicroRNAs , Animals , Female , Mice , Pregnancy , Apoptosis/genetics , Cell Differentiation , Homeostasis/genetics , Liver , MicroRNAs/genetics , Aging
15.
Int J Biol Sci ; 20(2): 554-568, 2024.
Article En | MEDLINE | ID: mdl-38169732

The vertebrate adult intestinal epithelium has a high self-renewal rate driven by intestinal stem cells (ISCs) in the crypts, which play central roles in maintaining intestinal integrity and homeostasis. However, the underlying mechanisms remain elusive. Here we showed that protein arginine methyltransferase 1 (PRMT1), a major arginine methyltransferase that can also function as a transcription co-activator, was highly expressed in the proliferating cells of adult mouse intestinal crypts. Intestinal epithelium-specific knockout of PRMT1, which ablates PRMT1 gene starting during embryogenesis, caused distinct, region-specific effects on small intestine and colon: increasing and decreasing the goblet cell number in the small intestinal and colonic crypts, respectively, leading to elongation of the crypts in small intestine but not colon, while increasing crypt cell proliferation in both regions. We further generated a tamoxifen-inducible intestinal epithelium-specific PRMT1 knockout mouse model and found that tamoxifen-induced knockout of PRMT1 in the adult mice resulted in the same region-specific intestinal phenotypes. Thus, our studies have for the first time revealed that the epigenetic enzyme PRMT1 has distinct, region-specific roles in the maintenance of intestinal epithelial architecture and homeostasis, although PRMT1 may influence intestinal development.


Intestine, Small , Protein-Arginine N-Methyltransferases , Animals , Mice , Arginine , Cell Proliferation/genetics , Epithelial Cells/metabolism , Homeostasis/genetics , Intestinal Mucosa/metabolism , Intestine, Small/metabolism , Mice, Knockout , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Tamoxifen
16.
Mol Metab ; 80: 101878, 2024 Feb.
Article En | MEDLINE | ID: mdl-38218537

OBJECTIVE: Numerous studies have highlighted the role of clock genes in diabetes disease and pancreatic ß cell functions. However, whether rhythmic long non-coding RNAs involve in this process is unknown. METHODS: RNA-seq and 3' rapid amplification of cDNA ends (RACE)-PCR were used to identify the rat LncCplx2 in pancreatic ß cells. The subcellular analysis with qRT-PCR and RNA-Scope were used to assess the localization of LncCplx2. The effects of LncCplx2 overexpression or knockout (KO) on the regulation of pancreatic ß cell functions were assessed in vitro and in vivo. RNA-seq, immunoblotting (IB), Immunoprecipitation (IP), RNA pull-down, and chromatin immunoprecipitation (ChIP)-PCR assays were employed to explore the regulatory mechanisms through LncRNA-protein interaction. Metabolism cage was used to measure the circadian behaviors. RESULTS: We first demonstrate that LncCplx2 is a conserved nuclear long non-coding RNA and enriched in pancreatic islets, which is driven by core clock transcription factor BMAL1. LncCplx2 is downregulated in the diabetic islets and repressed by high glucose, which regulates the insulin secretion in vitro and ex vivo. Furthermore, LncCplx2 KO mice exhibit diabetic phenotypes, such as high blood glucose and impaired glucose tolerance. Notably, LncCplx2 deficiency has significant effects on circadian behavior, including prolonged period duration, decreased locomotor activity, and reduced metabolic rates. Mechanistically, LncCplx2 recruits EZH2, a core subunit of polycomb repression complex 2 (PRC2), to the promoter of target genes, thereby silencing circadian gene expression, which leads to phase shifts and amplitude changes in insulin secretion and cell cycle genes. CONCLUSIONS: Our results propose LncCplx2 as an unanticipated transcriptional regulator in a circadian system and suggest a more integral mechanism for the coordination of circadian rhythms and glucose homeostasis.


Diabetes Mellitus , Insulin-Secreting Cells , RNA, Long Noncoding , Mice , Rats , Animals , Insulin-Secreting Cells/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Insulin/metabolism , Diabetes Mellitus/metabolism , Glucose/metabolism , Homeostasis/genetics
17.
Sci Rep ; 14(1): 373, 2024 01 03.
Article En | MEDLINE | ID: mdl-38172169

If there was no gene interaction, the gene aggregation effect would increase infinitely with the increase of gene number. Epistasis avoids the endless accumulation of gene effects, playing a role of homeostasis. To confirm the role, QTL epistases were analyzed by four single-segment substitution lines with heading date QTLs in this paper. We found that QTLs of three positive effects and one negative effect generated 62.5% negative dual QTL epistatic effects and 57.7% positive triple QTL epistatic effects, forming the relationship "positive QTLs-negative one order interactions-positive two order interactions". In this way, the aggregation effect of QTLs was partially neutralized by the opposite epistatic effect sum. There also were two exceptions, QTL OsMADS50 and gene Hd3a-2 were always with consistent effect directions with their epistases, implying they could be employed in pyramiding breeding with different objectives. This study elucidated the mechanism of epistatic interactions among four QTLs and provided valuable genetic resources for improving heading date in rice.


Oryza , Chromosome Mapping , Oryza/genetics , Phenotype , Epistasis, Genetic , Chromosomes, Plant , Plant Breeding , Homeostasis/genetics
18.
Nucleic Acids Res ; 52(1): 125-140, 2024 Jan 11.
Article En | MEDLINE | ID: mdl-37994787

Maintaining the intracellular iron concentration within the homeostatic range is vital to meet cellular metabolic needs and reduce oxidative stress. Previous research revealed that the haloarchaeon Halobacterium salinarum encodes four diphtheria toxin repressor (DtxR) family transcription factors (TFs) that together regulate the iron response through an interconnected transcriptional regulatory network (TRN). However, the conservation of the TRN and the metal specificity of DtxR TFs remained poorly understood. Here we identified and characterized the TRN of Haloferax volcanii for comparison. Genetic analysis demonstrated that Hfx. volcanii relies on three DtxR transcriptional regulators (Idr, SirR, and TroR), with TroR as the primary regulator of iron homeostasis. Bioinformatics and molecular approaches revealed that TroR binds a conserved cis-regulatory motif located ∼100 nt upstream of the start codon of iron-related target genes. Transcriptomics analysis demonstrated that, under conditions of iron sufficiency, TroR repressed iron uptake and induced iron storage mechanisms. TroR repressed the expression of one other DtxR TF, Idr. This reduced DtxR TRN complexity relative to that of Hbt. salinarum appeared correlated with natural variations in iron availability. Based on these data, we hypothesize that variable environmental conditions such as iron availability appear to select for increasing TRN complexity.


Bacterial Proteins , Gene Regulatory Networks , Haloferax volcanii , Iron , Bacterial Proteins/metabolism , Haloferax volcanii/genetics , Haloferax volcanii/metabolism , Homeostasis/genetics , Iron/metabolism , Metals , Transcription Factors/genetics , Transcription Factors/metabolism
19.
Front Endocrinol (Lausanne) ; 14: 1221228, 2023.
Article En | MEDLINE | ID: mdl-38075044

Purpose: Utilize Mendelian randomization (MR) to examine the impact of leisure sedentary behavior (LSB) on the prevalence of type 2 diabetes mellitus (T2D) and glycemic homeostasis impairment, as well as to identify potential mediating pathways involved in these associations. Methods: We chose genetic variants linked to LSB from a large genome-wide association study (GWAS) to use as instrumental variables (IVs). Then, we used a two-sample MR study to investigate the link between LSB and T2D and glycemic homeostasis. Multivariate MR (MVMR) and mediation analysis were also used to look at possible mediating paths. Results: MR analysis showed a genetical link between leisure TV watching and T2D (OR 1.64, 95% CI 1.39-1.93, P< 0.001) and impaired Glycemic Homeostasis, while leisure computer use seemed to protect against T2D prevalence (OR 0.65, 95% CI 0.50-0.84, P< 0.001). It was found that leisure TV watching increases the risk of T2D through higher BMI (mediation effect 0.23, 95% CI 0.11-0.35, P< 0.001), higher triglycerides (mediation effect 0.07, 95% CI 0.04-0.11, P< 0.001), and less education (mediation effect 0.16, 95% CI 0.08-0.24, P< 0.001). Sensitivity and heterogeneity analyses further substantiated the robustness of these findings. Reverse MR analysis did not yield significant results. Conclusion: This study shows LSB is linked to a higher rate of T2D and impaired glycemic homeostasis through obesity, lipid metabolism disorders, and reduced educational attainment.


Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/etiology , Diabetes Mellitus, Type 2/genetics , Mendelian Randomization Analysis , Genome-Wide Association Study , Sedentary Behavior , Homeostasis/genetics
20.
Hum Genomics ; 17(1): 112, 2023 Dec 14.
Article En | MEDLINE | ID: mdl-38098073

BACKGROUND: Sudden sensorineural hearing loss (SSNHL) is an abrupt loss of hearing, still idiopathic in most of cases. Several mechanisms have been proposed including genetic and epigenetic interrelationships also considering iron homeostasis genes, ferroptosis and cellular stressors such as iron excess and dysfunctional mitochondrial superoxide dismutase activity. RESULTS: We investigated 206 SSNHL patients and 420 healthy controls for the following genetic variants in the iron pathway: SLC40A1 - 8CG (ferroportin; FPN1), HAMP - 582AG (hepcidin; HEPC), HFE C282Y and H63D (homeostatic iron regulator), TF P570S (transferrin) and SOD2 A16V in the mitochondrial superoxide dismutase-2 gene. Among patients, SLC40A1 - 8GG homozygotes were overrepresented (8.25% vs 2.62%; P = 0.0015) as well SOD2 16VV genotype (32.0% vs 24.3%; P = 0.037) accounting for increased SSNHL risk (OR = 3.34; 1.54-7.29 and OR = 1.47; 1.02-2.12, respectively). Moreover, LINE-1 methylation was inversely related (r2 = 0.042; P = 0.001) with hearing loss score assessed as pure tone average (PTA, dB HL), and the trend was maintained after SLC40A1 - 8CG and HAMP - 582AG genotype stratification (ΔSLC40A1 = + 8.99 dB HL and ΔHAMP = - 6.07 dB HL). In multivariate investigations, principal component analysis (PCA) yielded PC1 (PTA, age, LINE-1, HAMP, SLC40A1) and PC2 (sex, HFEC282Y, SOD2, HAMP) among the five generated PCs, and logistic regression analysis ascribed to PC1 an inverse association with moderate/severe/profound HL (OR = 0.60; 0.42-0.86; P = 0.0006) and with severe/profound HL (OR = 0.52; 0.35-0.76; P = 0.001). CONCLUSION: Recognizing genetic and epigenetic biomarkers and their mutual interactions in SSNHL is of great value and can help pharmacy science to design by pharmacogenomic data classical or advanced molecules, such as epidrugs, to target new pathways for a better prognosis and treatment of SSNHL.


Hearing Loss, Sensorineural , Hearing Loss, Sudden , Humans , DNA Methylation , Iron/metabolism , Iron/therapeutic use , Transferrin/genetics , Transferrin/metabolism , Transferrin/therapeutic use , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sudden/drug therapy , Hearing Loss, Sudden/genetics , Homeostasis/genetics
...